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First-order phase transition in unfolding a collapsed polymer: A histogram Monte Carlo
simulation
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The phase transition associated with stretching a collapsed polymer (asisisting ofN monomers is
investigated in detail using the histogram Monte Carlo simulation method and the bond-fluctuation model. The
distribution functions for the number of contacts and end-to-end distances are obtained. The free energy profile
associated with the transition is explicitly computed. Our results on the energy cumulants and free energy
profiles provide direct evidence for the first-order nature of the phase transition. The phase transition occurs in
the whole poor solvent regime below tiRepoint, x> x.. The free energy barrier at the transition is found to
scale withN(x— x.). Phase diagram for the first-order transition phase boundary is also obtained. We find that
the mean-field theory results give only a qualitatively correct picture for the phase transition.
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[. INTRODUCTION The nature of phase transitions can be very precisely studied
by Monte Carlo simulation and hence the validity of theoret-
Previous studies on the deformation of a polymer Chairical predictions can be examined in detail. Furthermore, by
were mostly concerned with the unwinding and stretching ofinfolding these collapsed macromolecules, it may provide
a polymer chain under forces or flows for swollen or idealelevant information on the mechanism of protein folding

: : - : and other related structures in biomolecules. Thus a knowl-
polymer chains using scaling calculatidiis-4]. These stud- edge of the free energy profile is useful in the understanding

ies found that in these cases, the deformation of the chain IS¢ the dynamics of protein folding. However, to calculate the
progressive and no sharp coil-stretch phase transition occurgege energy accurately and efficiently is noﬁtrivial, even in a

The theoretical interest in this subject has been further stimusomputer simulation. In this paper we apply the histogram
lated by current experimental techniques to manipulate anflionte Carlo methodl17,18 to our polymer system of inter-
observe the configuration of a single DNA macromoleculeest and the free energy can be readily calculated.

under external stretching forces using fluorescence micros- From the viewpoint of statistical physics, such a system
copy. These can be achieved by attaching a magnetic bead ¢bows a variety of interesting phase transition phenomena
the free end of an end-grafted DNA and subjected to magwhich can provide experimental realizations and testing
netic [5] or hydrodynamic[5-8] forces and by microme- grounds for these theoretical models. The applicability of the
chanical techniquef9]. In this study, we consider another histogram Monte Carlo methdd 7,1 is rather wide, from
more interesting situation, namely, the unwinding of a poly-fil’St-Ol’del’ to continuous phase transitions, from lattice mod-
mer collapsed in a bad solvent, i.e., below hepoint[10—  €ls to continuum models, though most of the applications of
12]. Such a phenomenon may provide some understanding #€ histogram Monte Carlo methods in the past were on the
the nature for protein folding, which can be crudely modeledStudies of phase transitions in spin systems such as Potts
as the reverse process if the external stretch is removed. REICdelS. In particular, its applications to polymer systems are
cent mean-field calculatiofil0,11 and stability analysis Stll rather limited[19,20. Many polymer systems possess
[13,14 of Flory-type models showed that in stretching a CO|_r|ch behaviors of phase transnmns due to the complexity gnd
lapsed polymer coil in poor solvent, a first-order transition/'9€ degrees of freedom in the system and hence the histo-

occurs as the stretching force is increased to some threshofi@m method would provide a convenient way to investigate
value. However, the mean-field result could be wrong, eVeﬁhese phenomena. Furthermore, due to the complicated inter-

qualitatively, in predicting the nature of phase transitions.2€tions among the monomers in a polymer system, the un-

Examples of such failure include predicting a transition at aderstanding of the free energy profile is essential in many

finite temperature for the Ising model regardless of the spaMacromolecular systems. The histogram method can com-

tial dimension, and predicting first-order transitions in a two-Pute the free energy profile with relative ease and is poten-
dimensional Potts model even when the number of Pottdally ready to be applied to reallst'lc macromolecules such as
states is not greater than[@5]. On the other hand, in some Protéin and DNA. An understanding of the free energy pro-
polymer systems such as demixing transition of a symmetriéll® Of these proteins or DNAs can provide valuable insights
polymer mixture, mean-field behavior is corrét®] in the in the nature of protein folding and other relevant kinetic

long chain limit. Therefore one should be careful about theEff€Cts determined by the free energy profile.

results of mean-field theory in the nature of phase transitions. L. MEAN-FIELD CALCULATIONS
The mean-field results of the system are briefly reviewed
*Electronic address: pylai@spl1.phy.ncu.edu.tw here for completeness; more details can be found in Ref.
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[11]. The system consists of a polymer chain witt>1  the polymer globule is elongated progressively and continu-
monomers collapsed in a poor solvent with one end fixed abusly.

some point in spac@aken to be the=0 plang. A force f For y>x*=1, the free energyF(7) possesses two
pulls on its free end in the direction which tends to unwind minima separated by a free energy barrier. et ¢*, the

the chain. Letz denote the end-to-end distan¢also the stretched state is metastable and the characteristic time for it
height of the free-end monomeof the chain, then the total to transit to the stable collapsed state depends on the free
phenomenological reduced free energy is composed of thremergy barrier height. The free energy barrier is maximal at
terms corresponding to the elastic free energy, mixing freep=¢* and is given by11]

energy and the potential energy duef tas follows:

AF Vet (Xx—xo) .
NKkT XX~ (7)

F 1 3
o ~Fert 5| @rFm@]- oz, &
in the largeN limit. The tunneling time can be estimated
wherek is the Boltzmann Constan’f' is the temperaturep from 7~ eXp(AF/kT) The existence Of metastable states in a

=f/(kT), a is the monomer size, anfd,, is the elastic free first-order transition is manifested experimentally by the
energy. In the poor solvent regime, the elastic free energpresence of hysteresis loop if the observation time is not

[21] consists of two terms much greater than the lifetime of metastable stai€s.
1z [ g 3Na? . 1. BOND-FLUCTUATION MODEL
Fe'_a 0£ Na dUt oz 2) AND THE HISTOGRAM MONTE CARLO METHOD

_ . . . , The bond-fluctuation mode(BFM) [25] for polymer
where £(x) = cothx—1/x is the Langevin function. The first 5ins js employed to investigate the system by Monte Carlo
term in F takes into account the finite extensibility of the gimulations. In the BFM, a cube of eight lattice sites repre-

chain[22] which is important for strongly stretched configu- gents each effective monomer on a simple cubic lattice. Self-
rations whereas the second term dominates for collapseg|,gigance is modeled by the requirement that no two mono-
configurationsF m;y is the Flory mixing free energl22,23  mers can share a common site. The 108 allowed bond
B vectors connecting two consecutive monomers along a chain
Frix(P)=(1=®)In(1-P)+xP(1- D), (3  are obtainable from the s¢{2,0,0, (2,1,0, (2,1,D), (2,2,D),

. . . (3,0,0, (3,1,0} by the symmetry operations of the cubic lat-
wherey is the usual Flory interaction parameter ahds the tice, i.e., (2,0,0) represents=@,0,0), (0:2,0), and (0,0,

monomer volume fraction. As in the usual Flory mean-fieldiz)’ etc. To model the poor solvent condition, an attractive

calculation D is approximgted by a constant. In the absefnc%teraction among the monomers is modeled by an energy
of external force, the chain has a spherical shape and it h% st—e<0 if two monomers are neighbors of each other

been shown that a second-order transition from the swolleq, . X :

o wo monomers are considered as neighb@®,26,27 if
state to the collapsed 'st§[@'3,24] occurs atXC_l/.z' For?( they are separated by one of the displacement vectors
;1/2’ t.hEBOIKIg,ISerACO'L |s®|n a.swoll_en s_talt/ez W'rt]h a I:near {(2,0,0, (2,1,0, (2,1,1} (plus those obtained from symmetry

|men;|qn bah ' I'tkt © 'dp0||nt, )'(I_)'(?\_ , 'Ntl,‘; pAo ﬁ operationg and there is no distinction for the energy cost for
mer chain behaves like an ideal coll with sz@N"* And — hage three types of bond vectors. The Monte Carlo proce-
for x>1/2 the chain has a collapsed configuration with aj,re starts by choosing a monomer at random and trying to

. . . 1/3 . .
linear dimensior=aN™". Under a strong enough unwinding ,ye it one lattice spacing in one of the randomly selected
force, the polymer will be stretched. The collapsed anogqirections:ix,iy,iz. The move will be accepted only

strgtched statgs are distinguished by the ordgr parameter, i'f“(i) self-avoidance is satisfiedij) the new bonds still be-
units of a, defined by»=2z/N. Henceforth.a will also be 5,4 15 the allowed set, andiii) the Boltzmann factor

apsorbed in the unit o¢> _for convenience. The stable. state is exp(—AE/KT) is greater than a uniformly distributed random
given by the global minimum of the fre_e energy. This mOdelnumber between 0 and 1, whek& is the energy change due
was solved11] exactly in theN—ce limit to give to the move. Henceforth the reduced enejgs e/kT and
e=1 will be used for conveniencey defined here in our
()= . (4) simulation model has the same physical meaning as the one
L(p)  for ¢>o* in mean-field theory in the preceding section, though numeri-
cally it can be differenty=0 corresponds to the good sol-
Furthermore for a given value af, ¢* can be solved in the vent condition. In this BFM, thé point corresponds tq.
N—-oo limit to obtain the equation for the first-order phase =0.52[28].

0 for p<¢*

transition boundary11] The stretching force acting in the direction is imple-
mented by fixing one end of the polymer in space at an
o* =eX" “Xsinhe*, (50 altitudez=0 and a potential energy fz is associated with

the free-end monomer at a height A polymer chain ofN
with x* =2x.=1. Moreover, there is no abrupt change in monomers is placed in a sufficiently large box. The initial
the x.<x<x* poor solvent regime, with configuration of the chain is grown by random self-avoiding
walk to the desired length under good solvent condition and
(g)=L(p) for all =0 andy.<y<x*, (6) no external force. Then the polymer is slowly annealed to the
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desired values of andf. Starting with given values of 30 r y T T T
and f, the system is allowed to equilibrate for a long time r
(typically five times the relaxation timeand then the histo- r (a)
gram for the relevant physical quantities and other ensemble C " 1
averages are taken from runs over an even longer period of C " —— ¢=0.85 ]
time. Time is measured in units of Monte Carlo steps per 20 - . — 095 7]
monomer(MCS/monomer. One MCS/monomer means that .~ [ P - L0 ]
on average every monomer has attempted to make one trial 3 L i ]
move. A~ o ]
In the model for the coil-globule collapse transition, the - ]
L ) 10 F .
solvent quality is modeled by an attractive energy cost when - 1
the monomers are neighbors of each other. In the presence of r
an external stretching force, the Hamiltonian or the total en- C
ergy E of the system is N
E/kT=—xC— ¢z, (8) %0 3.0 40 5.0
where(C is the number of neighbor contact pairs anid the 9.0 . . .
position of the free-end monoméwhich is also thez com- Tr ]
ponent of the end-to-end distancdll the thermodynamic 80 F (b) 3
behavior of the system is determined solely by the param- i 3
etersy and¢. Large values ofy correspond to poor solvent 7o r E
conditions. We are interested in the phase transition from a 60 E L ¢=8'§§ 3
collapsed polymer to a stretched polymer; these two states g . 10 1
can be characterized by the stretch paran{@e; defined as =30F E
in the preceding section, as & a0 b 3
n=z/N ©) 30 F 3
and/or the collapsed parameter 20 ¢ E
W=CIN. (10) 10°¢ ]
0.0 bedeem 3
0.0 0.5 2.0

We shall use the stretched parameteas the order param-
eter in the analysis of the simulation data. Since one needs to

extrapolate phy_sical quantities_related_ﬁcand _¢’: the hiStq- FIG. 1. Probability distributions of a chain of length=60 and
gramH (¢, ) will be recorded in the simulation. Following ; X=1.0 for three values ofs. (a) P()=/P (. 7)d7, (b)

standard histogram Monte Carlo methdd], let Ho(+,7) P(7)=JP,.(,7)dy. The distributions are normalized.
be the histogram recorded g4 and ¢y, then the probability

distribution at anothery, ¢) is given by

Since one expects a first-order transition in stretching the
collapsed chain, a knowledge of the order of magnitude of
P ()= Ho(#, 7) expNL(x ~ xo) ¥+ (¢~ ¢o) 71} _ the tunneling time between the collapsed and stretched states

xe S H XPNT = xo) 4+ (o 00) in advance would be desirable. This can be estimated from
) o( ¢, meXpNL(x ~ xo) ¥+ (@~ @o) 1} our previous study[10] (without using the histogram
(11)  method for N=40, with the longest relaxation time found to
be of the order of 9DMCS/monomer ajy=1 and near the
Then for any physical quantitl (which is a function ofyy  threshold force. The order of magnitude of tunneling times at
and/or 7), its equilibrium average value gtand ¢ is other values ofy and chain lengths can then be estimated
from Eq. (7). Finally, one can make sure that the simulation
B period is long enouglimuch greater than tunneling time
(B)—% BPyo(#h.7). (12) from results on the distribution functiorisee next section
which should be smooth and characterized by the double-
Thus by recording the histogram atd,¢o), quantities at Peak feature of a typical first-order phase transition.
other values of {,¢) can be obtained. Of course the range
of accurate extrapolatior_] WiI_I be Ii_mited by the statistic_s of IV. DISTRIBUTION EUNCTIONS
the histogram[17]. In this S|mula_t|'on stqdy, by'choosmg AND ORDER PARAMETER
(xo0,¢0) close to the phase transition points of interest and
recordingH, up to 10 samples, nice data for a sufficiently ~ Extensive simulations are carried out to obtain the histo-
wide range of accurate extrapolation are obtained. The mulgrams for various values ofyg,¢o) near the phase transi-
tihistogram method18] can also be used to extend the rangetion points for chains of different length®,, .(#,7) can be
of accurate extrapolation. obtained from the histogramiy(#,7) through Eq.(10),




PRE 58 FIRST-ORDER PHASE TRANSITION IN UNFOLDINGA . . . 6225

4.0 . , _ “ |
40 [ f 1
= —-—- N=30
S [ - 40
=30 — 80 .
=l \ :
820 - A 1
=T ; 7
RO :
I .
10 - AR ]
i AR
L e < AL
! - oI YA
0.0 1 1 \ 0 I %
0.5 1.0 15 2.0 2.5 0.0 1.0 2.0

FIG. 2. The order parametér;) and the collapsed parameter FIG. 4. Specific heatin units of k) versus¢ for chains of
() versuse at two values ofy. N=80. various lengths ag=1.2.

hence the probability distributions for the number of contactg/alue of¢ such that the two minima in the free energy pro-
P() and thez position of the free-end monomé(7) are file are of the same depflor the two peaks irP() are of
also obtained. Figure 1 displays these distributions with 4he same heightThe true phase transition threshold value in
given value ofy=1, but with three different values of. At  the N—o limit is denoted bye™. Using the histogram ex-
y=1, the polymer is in a rather poor solvent and is Strong|ytrapolat|on technique, the variation of the order parameter
collapsed in the absence of external unwinding fatbe ® (%) and the collapsed paramet¢y) are calculated as a
point for this model isy.=0.52). InFig. 1(@), P(¢) has a function of ¢ for fixed vglue_s ofy. The reSL_JIts for different
single peak forp=0.85 which is below the transition to the Values ofx are shown in Fig. 2 for a chain d1=80. For
stretched state. The average number of neighbors per mong= 1.2, @ sharp jump in the order parameter occurgat
mer peaks narrow|y aroun¢:3_8, characteristic of a col- =1.3, typlcal in a first-order transition. A Sharp decrease in
lapsed state. As the stretching force is increasedgpto (i) @lso occurs apy . However, fory=1.1 the changes in
=0.95, very close to the transition poir(#) shows a the order parameter afgh) are much less abrupt, suggesting
prominent double-peak character with an extra pealyat & weak first-order transition. More detailed analyses on the
=1 signaling the emergence of the coexisting stretched statéee energy profile and energy cumulant are carried out in the
This characteristic of a first-order transition can also be obnext section in order to determine the existence of a first-
served[Fig. 1(b)] from the change of a single peak ()  order transition.

below the threshold force to the emergence of a second peak

near the transition point. The threshold force at the transitiorv. ENERGY CUMULANTS AND FREE ENERGY PROFILE

. i ) . . .
point, denoted bypy, , is defined in the simulation to be the The average total energy of the systégiven by Eq.(8)]

can be readily computed from the histogram method. Figure

60 r ] 3 displays the mean energy per monomer of a chain of length
i ] N=280 as a function ofp for two fixed values ofy. For y
50 3 E =0.9, (E) continuously increases with suggesting the ab-
Tr 1 sence of aor weak first-order phase transition. But for
F 3 =1.2, (E) shows a sharp drop aty=1.3 signaling a first-
é 40 3 E order phase transition. The specific heat can also be easily
A g 3 computed by the mean square energy deviation and the re-
84 E 3 sults are shown in Fig. 4 as a function effor chains of
Y 30 £ = different lengths. The peak of the specific heat grows rapidly
g ] as the length increases, suggesting a phase transition in the
E thermodynamic limit. The nature of the phase transition can
20 E 3 be investigated by finite-size analysis of Binder's energy cu-
g ] mulant[30] defined as
C L . ] 4
1'00.0 1.0 2.0 3.0 Vy=1- (En ) (13
¢ 3(E”R

FIG. 3. Mean energy per monom@n units ofkT) versuse for ~ where( )y denotes thermal average of a chain of leniyth
two values ofy. N=80. For first-order transitionyVy—2/3#0 at ¢=¢* asN—x,
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FIG. 5. Energy cumulanV versuse for chains of various FIG. 6. Reduced free energy profflgkT as a function of the
lengths aty=1.2. order parameter; for N=40 andy=1, for different values ofp

below, close to, and above the first-order transitigh=0.8195.

whereas for higher-order transitioly,=2/3 asN—o even

at the transition poinis*. As shown in Fig. 5V has a a function of y for chains of different lengths. The linear

deeper and narrower minimum as the svstem size increasebehavior of AF agrees with the mean-field result. Further-
P y More Eq.(7) predicts that the slope of the straight line is

indicating the typical feature of a first-order transition. roportional toN. The slopes for the data in Fia. 7 are plot-
Direct evidence of the first-order nature of the phase tranP P L >10pE 9- P
. * . . ted as a function oN in Fig. 8@a). The slopes show very
sition ate™* can be obtained from the free energy profile as a

functi f h d tor. An i tant advant hicely a linear behavior passing through the origin, in good
function of the order parametey. An important advantage agreement with the prediction. In the simulation of a poly-
in using the histogram method is that the free energy land- er of finite chain length, the value gf below which there

scape associated with the phase transition can be readily cal o * : -

culated using the technique developed by Lee and Kosterlit?. no.transmon 'S derloted byy - Thex intercept in '.:Ig.' !

[31] in the study of the Potts model. The free energy as eYVL” give the value ofyy . To extrapolate to the large limit,

function of the order paramet&( ) at any given f,¢) can X IS plotted against N in Fig. 8(b). The data in Fig. &)

be computed, up to an additive constant, from the histograrffll roughly on a straight line indicating an approximatél 1/

method as finite-size effect instead of the N? finite-size correction
predicted by Eq(7). Thus our data suggest the free energy

F(n) barrier at the first-order transition point can be estimated as
7 =~ In 2 Ho(s, mexp{N[(x— xo) ¥+ (¢ = o) 7]}.
¥ 14 AF A .. const 15
Nk AX =X (15

Figure 6 shows the result &% ») for various values of for
x=1 extrapolated from thex(,¢)=(1,0.805) histogram C
with N=40. The double minima separated by a free energy 9.0 F

10.0 g T

profile provide direct evidence for the first-order nature of 80 £ §N=3O
the transition. The minimum at small value gfis the col- o 60
lapsed state and the one at largercorresponds to the 70 A 80
stretched state. Fap<¢y,, the stretched state is the meta- 60 £
stable state while fo> ¢y, the collapse state becomes C
metastable. Ag increases, the global minimum jumps from % 30 3
the collapse to the stretched state. The two minima have the 40
same depth apy=0.8195. The jump in the order parameter 3.0 3

will of course depend on the given value pf the jump will .
be larger for a poorer solvefiarger x). 20 £
The free energy barrier is essential to the lifetime of the g
metastable states which is in turn related to the memory or
hysteresis effect. This can be measured by the maximum of
the free energy barrieAF which occurs ate= ¢y . The X
lifetime of the metastable states can be characterizee by
~exg AF/KT]. From the mean-field theory prediction in Eq.  FIG. 7. Reduced free energy barridF/kT at the transition
(7), AF is positive fory> x* and this can be tested with our point ¢* versusy for chains of different lengths. Error bars are
simulation data. Figure 7 shows~ at the transition point as about the sizes of the symbols.

0.0: 1 1 1 1 (] 1 1 1 1 N
05 06 07 08 09 10 11 12 13 14 15
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13 £ ' ' ' FIG. 9. Phase diagram of the reduced threshold ferteversus

12 x- Solid line is the result from the mean-field theory by taking
x* =2x.=1.04. Symbols are Monte Carlo data for chains of length
1.1 N=40 and 80.
10 £ VI. SUMMARY AND DISCUSSION
. 09 In this paper the phase transition in unwinding a collapse
>§08 polymer in a poor solvent condition was investigated in de-
Tk tail using the histogram Monte Carlo method. Our results on
0.7 E the energy cumulants and free energy profiles provided good
06 evidence for the first-order nature of this phase transition. By

: E increasing the external unwinding force, the linear dimension
05 E 3 of a long polymer coil can vary over several orders of mag-
E nitude abruptly. This may be useful in some applications on

04 E ' L : 3 chemical/biochemical engineering in designing a molecular
0.00 0.01 10/0131 0.03 0.04 gateway in which the gate is closed by stretching the poly-
mer chain to block the path. By performing careful finite-size

FIG. 8. (a) The slopes of the data in Fig. 7 vershis (b) i, ~ analysis of the free energy profile data, we showed that such

versus IN for chains of lengthsN=30, 40, 60, and 80y* is @ transition occurs for a polymer chain in the entire poor
extrapolated from th&l— limit to be 0.53-0.03. Error bars are Solvent regime below theéd point (x> x.). Mean-field
about the sizes of the symbols. Straight lines are best fits to the dattieory predicts correctly the first-order nature of the transi-
tion, but this transition occurs only in the>2y. regime.
The discrepancy is due to the corrections to mean-field be-
havior.

On the other hand, the first-order phase boundary separat-
ing the collapse and stretched states can be computed from
the histogram Monte Carlo extrapolation. Figure 9 displays
the phase diagram obtained from data &80 polymer

for some model dependent constantThe free energy bar-
rier is extensive to leading order M as expected. Extrapo-
lating to largeN, we get an estimate of* =0.53+0.03 by
least squares fitting. The value gf is remarkably close to
the ® point of our modely.=0.52+0.01 [28] suggesting

x* = xc. Thus the mean-field result in E) is correct only . o . .
L : . _ chain. The collapse state is in the largeregion while the
qualitatively. Our simulation data suggest thet=y, and stretched state lies in the smallregime. The prediction of

first-order transition exists in the whole poor solvent regime X : )
- . . the phase boundary from mean field theory in £, using
x> xc- The lifetime of the metastable state is hence given ' - . d
by, to leading order i, X =2x.=1.04, is also shqwn for comparison. The mean-
field result can only describe the phase boundary qualita-
tively. The prediction is better in the larggrbehavior. More
=10 eXH A(x— xcIN] (16)  significant deviation is observed for data nedr. Naively
extrapolating the simulation data fdf=40 and 80 in Fig. 9
to the y axis givesy* ~0.5 consistent with the value ob-
for some microscopic time scalg. The value of the model tained from finite-size analysis in the preceding section.
dependent constahtis obtained from least squares fitting of ~ This first-order phase transition can be understood intu-
the data in Fig. 8) to be A=0.314+0.02. Because of the itively from the following physical picture: the monomers
exponential increase factor in the chain lenfth~ can be are attracted rather strongly to each other in the collapsed
macroscopic or even astronomical in a realistic long polymesituation, the external force acting on the ends of the polymer
chain. which tends to unfold the polymer will increase the tension
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along the chain and try to pull the monomers apart from eacfThe above picture suggests that this first-order transition may
other. As the external unwinding force becomes strongre smoothed off to a higher-order or even no phase transition
enough, the monomer attraction will be overcome and thdf the range of monomer attraction is sufficiently long. This

separation between monomers increased. Since the attractiwill be tested by our future simulations.
among the monomers is short ranged, and provided the ten-

sion along the chain is uniforitihis is true if the unwinding
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