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First-order phase transition in unfolding a collapsed polymer: A histogram Monte Carlo
simulation

Pik-Yin Lai*
Department of Physics and Center for Complex Systems, National Central University, Chung-Li, Taiwan 320, Republic of Ch

~Received 6 May 1998!

The phase transition associated with stretching a collapsed polymer chain~consisting ofN monomers! is
investigated in detail using the histogram Monte Carlo simulation method and the bond-fluctuation model. The
distribution functions for the number of contacts and end-to-end distances are obtained. The free energy profile
associated with the transition is explicitly computed. Our results on the energy cumulants and free energy
profiles provide direct evidence for the first-order nature of the phase transition. The phase transition occurs in
the whole poor solvent regime below theQ point, x.xc . The free energy barrier at the transition is found to
scale withN(x2xc). Phase diagram for the first-order transition phase boundary is also obtained. We find that
the mean-field theory results give only a qualitatively correct picture for the phase transition.
@S1063-651X~98!09011-4#

PACS number~s!: 05.70.Fh, 05.70.Jk, 61.41.1e
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I. INTRODUCTION

Previous studies on the deformation of a polymer ch
were mostly concerned with the unwinding and stretching
a polymer chain under forces or flows for swollen or ide
polymer chains using scaling calculations@1–4#. These stud-
ies found that in these cases, the deformation of the cha
progressive and no sharp coil-stretch phase transition occ
The theoretical interest in this subject has been further sti
lated by current experimental techniques to manipulate
observe the configuration of a single DNA macromolec
under external stretching forces using fluorescence mic
copy. These can be achieved by attaching a magnetic be
the free end of an end-grafted DNA and subjected to m
netic @5# or hydrodynamic@5–8# forces and by microme
chanical techniques@9#. In this study, we consider anothe
more interesting situation, namely, the unwinding of a po
mer collapsed in a bad solvent, i.e., below theQ point @10–
12#. Such a phenomenon may provide some understandin
the nature for protein folding, which can be crudely mode
as the reverse process if the external stretch is removed
cent mean-field calculation@10,11# and stability analysis
@13,14# of Flory-type models showed that in stretching a c
lapsed polymer coil in poor solvent, a first-order transiti
occurs as the stretching force is increased to some thres
value. However, the mean-field result could be wrong, e
qualitatively, in predicting the nature of phase transitio
Examples of such failure include predicting a transition a
finite temperature for the Ising model regardless of the s
tial dimension, and predicting first-order transitions in a tw
dimensional Potts model even when the number of P
states is not greater than 4@15#. On the other hand, in som
polymer systems such as demixing transition of a symme
polymer mixture, mean-field behavior is correct@16# in the
long chain limit. Therefore one should be careful about
results of mean-field theory in the nature of phase transitio
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The nature of phase transitions can be very precisely stu
by Monte Carlo simulation and hence the validity of theor
ical predictions can be examined in detail. Furthermore,
unfolding these collapsed macromolecules, it may prov
relevant information on the mechanism of protein foldi
and other related structures in biomolecules. Thus a kno
edge of the free energy profile is useful in the understand
of the dynamics of protein folding. However, to calculate t
free energy accurately and efficiently is nontrivial, even in
computer simulation. In this paper we apply the histogr
Monte Carlo method@17,18# to our polymer system of inter
est and the free energy can be readily calculated.

From the viewpoint of statistical physics, such a syst
shows a variety of interesting phase transition phenom
which can provide experimental realizations and test
grounds for these theoretical models. The applicability of
histogram Monte Carlo method@17,18# is rather wide, from
first-order to continuous phase transitions, from lattice m
els to continuum models, though most of the applications
the histogram Monte Carlo methods in the past were on
studies of phase transitions in spin systems such as P
models. In particular, its applications to polymer systems
still rather limited @19,20#. Many polymer systems posses
rich behaviors of phase transitions due to the complexity
large degrees of freedom in the system and hence the h
gram method would provide a convenient way to investig
these phenomena. Furthermore, due to the complicated i
actions among the monomers in a polymer system, the
derstanding of the free energy profile is essential in ma
macromolecular systems. The histogram method can c
pute the free energy profile with relative ease and is pot
tially ready to be applied to realistic macromolecules such
protein and DNA. An understanding of the free energy p
file of these proteins or DNAs can provide valuable insig
in the nature of protein folding and other relevant kine
effects determined by the free energy profile.

II. MEAN-FIELD CALCULATIONS

The mean-field results of the system are briefly review
here for completeness; more details can be found in R
6222 © 1998 The American Physical Society



l
hr
re

rg

t
e

u-
s

ld
c
h
lle

ar

a
g
n
r

is
e

se

in

nu-

or it
free
l at

d
a

he
not

arlo
re-
elf-
no-
ond
hain

t-

ive
rgy

er.

tors
y
or
ce-

g to
ted

m
e

one
eri-
l-

an

ial
ng
nd
the

PRE 58 6223FIRST-ORDER PHASE TRANSITION IN UNFOLDINGA . . .
@11#. The system consists of a polymer chain withN@1
monomers collapsed in a poor solvent with one end fixed
some point in space~taken to be thez50 plane!. A force f
pulls on its free end in thez direction which tends to unwind
the chain. Letz denote the end-to-end distance~also the
height of the free-end monomer! of the chain, then the tota
phenomenological reduced free energy is composed of t
terms corresponding to the elastic free energy, mixing f
energy and the potential energy due tof as follows:

F

kT
5Fel1

1

a3E d3r F mix@F#2wz, ~1!

wherek is the Boltzmann constant,T is the temperature,w
[ f /(kT), a is the monomer size, andFel is the elastic free
energy. In the poor solvent regime, the elastic free ene
@21# consists of two terms

Fel5
1

aE0

z

L21S u

NaDdu1
3

2

Na2

z2 , ~2!

whereL(x)5cothx21/x is the Langevin function. The firs
term in Fel takes into account the finite extensibility of th
chain@22# which is important for strongly stretched config
rations whereas the second term dominates for collap
configurations.Fmix is the Flory mixing free energy@22,23#

Fmix~F!5~12F!ln ~12F!1xF~12F!, ~3!

wherex is the usual Flory interaction parameter andF is the
monomer volume fraction. As in the usual Flory mean-fie
calculation,F is approximated by a constant. In the absen
of external force, the chain has a spherical shape and it
been shown that a second-order transition from the swo
state to the collapsed state@23,24# occurs atxc51/2. Forx
,1/2, the polymer coil is in a swollen state with a line
dimension;aN3/5. At the Q point, x5xc51/2, the poly-
mer chain behaves like an ideal coil with size;aN1/2. And
for x.1/2 the chain has a collapsed configuration with
linear dimension.aN1/3. Under a strong enough unwindin
force, the polymer will be stretched. The collapsed a
stretched states are distinguished by the order paramete
units of a, defined byh[z/N. Henceforth,a will also be
absorbed in the unit ofw for convenience. The stable state
given by the global minimum of the free energy. This mod
was solved@11# exactly in theN→` limit to give

^h&5H 0 for w<w*

L~w! for w.w*
. ~4!

Furthermore for a given value ofx, w* can be solved in the
N→` limit to obtain the equation for the first-order pha
transition boundary@11#

w* 5ex* 2x sinhw* , ~5!

with x* 52xc51. Moreover, there is no abrupt change
the xc,x,x* poor solvent regime, with

^h&5L~w! for all w>0 and xc<x<x* , ~6!
at
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the polymer globule is elongated progressively and conti
ously.

For x.x* 51, the free energyF(h) possesses two
minima separated by a free energy barrier. Forw,w* , the
stretched state is metastable and the characteristic time f
to transit to the stable collapsed state depends on the
energy barrier height. The free energy barrier is maxima
w5w* and is given by@11#

DF

NkT
5x2x* 2

Aw* ~x2xc!

N1/3
~7!

in the largeN limit. The tunneling time can be estimate
from t;exp(DF/kT). The existence of metastable states in
first-order transition is manifested experimentally by t
presence of hysteresis loop if the observation time is
much greater than the lifetime of metastable states@10#.

III. BOND-FLUCTUATION MODEL
AND THE HISTOGRAM MONTE CARLO METHOD

The bond-fluctuation model~BFM! @25# for polymer
chains is employed to investigate the system by Monte C
simulations. In the BFM, a cube of eight lattice sites rep
sents each effective monomer on a simple cubic lattice. S
avoidance is modeled by the requirement that no two mo
mers can share a common site. The 108 allowed b
vectors connecting two consecutive monomers along a c
are obtainable from the set$~2,0,0!, ~2,1,0!, ~2,1,1!, ~2,2,1!,
~3,0,0!, ~3,1,0!% by the symmetry operations of the cubic la
tice, i.e., (2,0,0) represents (62,0,0), (0,62,0), and (0,0,
62), etc. To model the poor solvent condition, an attract
interaction among the monomers is modeled by an ene
cost 2e,0 if two monomers are neighbors of each oth
Two monomers are considered as neighbors@20,26,27# if
they are separated by one of the displacement vec
$~2,0,0!, ~2,1,0!, ~2,1,1!% ~plus those obtained from symmetr
operations! and there is no distinction for the energy cost f
these three types of bond vectors. The Monte Carlo pro
dure starts by choosing a monomer at random and tryin
move it one lattice spacing in one of the randomly selec
directions: 6x,6y,6z. The move will be accepted only
if ~i! self-avoidance is satisfied,~ii ! the new bonds still be-
long to the allowed set, and~iii ! the Boltzmann factor
exp(2DE/kT) is greater than a uniformly distributed rando
number between 0 and 1, whereDE is the energy change du
to the move. Henceforth the reduced energyx[e/kT and
e51 will be used for convenience.x defined here in our
simulation model has the same physical meaning as the
in mean-field theory in the preceding section, though num
cally it can be different.x50 corresponds to the good so
vent condition. In this BFM, theQ point corresponds toxc
50.52 @28#.

The stretching force acting in thez direction is imple-
mented by fixing one end of the polymer in space at
altitudez50 and a potential energy2 f z is associated with
the free-end monomer at a heightz. A polymer chain ofN
monomers is placed in a sufficiently large box. The init
configuration of the chain is grown by random self-avoidi
walk to the desired length under good solvent condition a
no external force. Then the polymer is slowly annealed to
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6224 PRE 58PIK-YIN LAI
desired values ofx and f . Starting with given values ofx
and f , the system is allowed to equilibrate for a long tim
~typically five times the relaxation time! and then the histo-
gram for the relevant physical quantities and other ensem
averages are taken from runs over an even longer perio
time. Time is measured in units of Monte Carlo steps
monomer~MCS/monomer!. One MCS/monomer means th
on average every monomer has attempted to make one
move.

In the model for the coil-globule collapse transition, t
solvent quality is modeled by an attractive energy cost w
the monomers are neighbors of each other. In the presen
an external stretching force, the Hamiltonian or the total
ergy E of the system is

E/kT52xC2wz, ~8!

whereC is the number of neighbor contact pairs andz is the
position of the free-end monomer~which is also thez com-
ponent of the end-to-end distance!. All the thermodynamic
behavior of the system is determined solely by the para
etersx andw. Large values ofx correspond to poor solven
conditions. We are interested in the phase transition fro
collapsed polymer to a stretched polymer; these two st
can be characterized by the stretch parameter@29#, defined as
in the preceding section, as

h[z/N ~9!

and/or the collapsed parameter

c[C/N. ~10!

We shall use the stretched parameterh as the order param
eter in the analysis of the simulation data. Since one need
extrapolate physical quantities related toh andc, the histo-
gramH(c,h) will be recorded in the simulation. Following
standard histogram Monte Carlo method@17#, let H0(c,h)
be the histogram recorded atx0 andw0 , then the probability
distribution at another (x,w) is given by

Pxw~c,h!5
H0~c,h!exp$N@~x2x0!c1~w2w0!h#%

(
c,h

H0~c,h!exp$N@~x2x0!c1~w2w0!h#%

.

~11!

Then for any physical quantityB ~which is a function ofc
and/orh), its equilibrium average value atx andw is

^B&5(
c,h

BPxw~c,h!. ~12!

Thus by recording the histogram at (x0 ,w0), quantities at
other values of (x,w) can be obtained. Of course the ran
of accurate extrapolation will be limited by the statistics
the histogram@17#. In this simulation study, by choosin
(x0 ,w0) close to the phase transition points of interest a
recordingH0 up to 109 samples, nice data for a sufficient
wide range of accurate extrapolation are obtained. The m
tihistogram method@18# can also be used to extend the ran
of accurate extrapolation.
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Since one expects a first-order transition in stretching
collapsed chain, a knowledge of the order of magnitude
the tunneling time between the collapsed and stretched s
in advance would be desirable. This can be estimated f
our previous study@10# ~without using the histogram
method! for N540, with the longest relaxation time found t
be of the order of 106 MCS/monomer atx51 and near the
threshold force. The order of magnitude of tunneling times
other values ofx and chain lengths can then be estimat
from Eq. ~7!. Finally, one can make sure that the simulati
period is long enough~much greater than tunneling time!
from results on the distribution functions~see next section!
which should be smooth and characterized by the dou
peak feature of a typical first-order phase transition.

IV. DISTRIBUTION FUNCTIONS
AND ORDER PARAMETER

Extensive simulations are carried out to obtain the his
grams for various values of (x0 ,w0) near the phase trans
tion points for chains of different lengths.Pxw(c,h) can be
obtained from the histogramH0(c,h) through Eq. ~10!,

FIG. 1. Probability distributions of a chain of lengthN560 and
at x51.0 for three values ofw. ~a! P(c)[*Pxw(c,h)dh, ~b!
P(h)[*Pxw(c,h)dc. The distributions are normalized.
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hence the probability distributions for the number of conta
P(c) and thez position of the free-end monomerP(h) are
also obtained. Figure 1 displays these distributions wit
given value ofx51, but with three different values ofw. At
x51, the polymer is in a rather poor solvent and is stron
collapsed in the absence of external unwinding force~the Q
point for this model isxc50.52). InFig. 1~a!, P(c) has a
single peak forw50.85 which is below the transition to th
stretched state. The average number of neighbors per m
mer peaks narrowly aroundc.3.8, characteristic of a col
lapsed state. As the stretching force is increased tow
50.95, very close to the transition point,P(c) shows a
prominent double-peak character with an extra peak ac
.1 signaling the emergence of the coexisting stretched s
This characteristic of a first-order transition can also be
served@Fig. 1~b!# from the change of a single peak inP(h)
below the threshold force to the emergence of a second p
near the transition point. The threshold force at the transi
point, denoted bywN* , is defined in the simulation to be th

FIG. 2. The order parameter^h& and the collapsed paramete
^c& versusw at two values ofx. N580.

FIG. 3. Mean energy per monomer~in units ofkT) versusw for
two values ofx. N580.
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value ofw such that the two minima in the free energy pr
file are of the same depth@or the two peaks inP(h) are of
the same height#. The true phase transition threshold value
the N→` limit is denoted byw* . Using the histogram ex-
trapolation technique, the variation of the order parame
^h& and the collapsed parameter^c& are calculated as a
function of w for fixed values ofx. The results for different
values ofx are shown in Fig. 2 for a chain ofN580. For
x51.2, a sharp jump in the order parameter occurs atwN*
.1.3, typical in a first-order transition. A sharp decrease
^c& also occurs atwN* . However, forx51.1 the changes in
the order parameter and^c& are much less abrupt, suggestin
a weak first-order transition. More detailed analyses on
free energy profile and energy cumulant are carried out in
next section in order to determine the existence of a fi
order transition.

V. ENERGY CUMULANTS AND FREE ENERGY PROFILE

The average total energy of the system@given by Eq.~8!#
can be readily computed from the histogram method. Fig
3 displays the mean energy per monomer of a chain of len
N580 as a function ofw for two fixed values ofx. For x
50.9, ^E& continuously increases withw suggesting the ab
sence of a~or weak! first-order phase transition. But forx
51.2, ^E& shows a sharp drop atwN* .1.3 signaling a first-
order phase transition. The specific heat can also be ea
computed by the mean square energy deviation and the
sults are shown in Fig. 4 as a function ofw for chains of
different lengths. The peak of the specific heat grows rapi
as the length increases, suggesting a phase transition in
thermodynamic limit. The nature of the phase transition c
be investigated by finite-size analysis of Binder’s energy
mulant @30# defined as

VN[12
^E4&N

3^E2&N
2

, ~13!

where^ &N denotes thermal average of a chain of lengthN.
For first-order transition,VN22/3Þ0 at w5w* as N→`,

FIG. 4. Specific heat~in units of k) versusw for chains of
various lengths atx51.2.
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whereas for higher-order transitionsVN52/3 asN→` even
at the transition pointw* . As shown in Fig. 5,VN has a
deeper and narrower minimum as the system size increa
indicating the typical feature of a first-order transition.

Direct evidence of the first-order nature of the phase tr
sition atw* can be obtained from the free energy profile a
function of the order parameterh. An important advantage
in using the histogram method is that the free energy la
scape associated with the phase transition can be readily
culated using the technique developed by Lee and Koste
@31# in the study of the Potts model. The free energy a
function of the order parameterF(h) at any given (x,w) can
be computed, up to an additive constant, from the histog
method as

F~h!

kT
52 ln (

c
H0~c,h!exp$N@~x2x0!c1~w2w0!h#%.

~14!

Figure 6 shows the result ofF(h) for various values ofw for
x51 extrapolated from the (x0 ,w0)5(1,0.805) histogram
with N540. The double minima separated by a free ene
profile provide direct evidence for the first-order nature
the transition. The minimum at small value ofh is the col-
lapsed state and the one at largerh corresponds to the
stretched state. Forw,wN* , the stretched state is the met
stable state while forw.wN* , the collapse state become
metastable. Asw increases, the global minimum jumps fro
the collapse to the stretched state. The two minima have
same depth atwN* .0.8195. The jump in the order paramet
will of course depend on the given value ofx, the jump will
be larger for a poorer solvent~largerx).

The free energy barrier is essential to the lifetime of
metastable states which is in turn related to the memory
hysteresis effect. This can be measured by the maximum
the free energy barrierDF which occurs atw5wN* . The
lifetime of the metastable states can be characterized bt
;exp@DF/kT#. From the mean-field theory prediction in E
~7!, DF is positive forx.x* and this can be tested with ou
simulation data. Figure 7 showsDF at the transition point as

FIG. 5. Energy cumulantVN versusw for chains of various
lengths atx51.2.
es,
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a function of x for chains of different lengths. The linea
behavior ofDF agrees with the mean-field result. Furthe
more Eq.~7! predicts that the slope of the straight line
proportional toN. The slopes for the data in Fig. 7 are plo
ted as a function ofN in Fig. 8~a!. The slopes show very
nicely a linear behavior passing through the origin, in go
agreement with the prediction. In the simulation of a po
mer of finite chain length, the value ofx below which there
is no transition is denoted byxN* . The x intercept in Fig. 7
will give the value ofxN* . To extrapolate to the largeN limit,
xN* is plotted against 1/N in Fig. 8~b!. The data in Fig. 8~b!
fall roughly on a straight line indicating an approximate 1N
finite-size effect instead of the 1/N3 finite-size correction
predicted by Eq.~7!. Thus our data suggest the free ener
barrier at the first-order transition point can be estimated

DF

NkT
5A~x2x* !2

const

N
~15!

FIG. 6. Reduced free energy profileF/kT as a function of the
order parameterh for N540 andx51, for different values ofw
below, close to, and above the first-order transition.w* .0.8195.

FIG. 7. Reduced free energy barrierDF/kT at the transition
point w* versusx for chains of different lengths. Error bars ar
about the sizes of the symbols.
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PRE 58 6227FIRST-ORDER PHASE TRANSITION IN UNFOLDINGA . . .
for some model dependent constantA. The free energy bar
rier is extensive to leading order inN as expected. Extrapo
lating to largeN, we get an estimate ofx* .0.5360.03 by
least squares fitting. The value ofx* is remarkably close to
the Q point of our modelxc.0.5260.01 @28# suggesting
x* 5xc . Thus the mean-field result in Eq.~7! is correct only
qualitatively. Our simulation data suggest thatx* 5xc and
first-order transition exists in the whole poor solvent regi
x.xc . The lifetime of the metastable state is hence giv
by, to leading order inN,

t5t0 exp@A~x2xc!N# ~16!

for some microscopic time scalet0 . The value of the mode
dependent constantA is obtained from least squares fitting
the data in Fig. 8~a! to be A.0.31460.02. Because of the
exponential increase factor in the chain lengthN, t can be
macroscopic or even astronomical in a realistic long polym
chain.

FIG. 8. ~a! The slopes of the data in Fig. 7 versusN. ~b! xN*
versus 1/N for chains of lengthsN530, 40, 60, and 80.x* is
extrapolated from theN→` limit to be 0.5360.03. Error bars are
about the sizes of the symbols. Straight lines are best fits to the
e
n

r

VI. SUMMARY AND DISCUSSION

In this paper the phase transition in unwinding a collap
polymer in a poor solvent condition was investigated in d
tail using the histogram Monte Carlo method. Our results
the energy cumulants and free energy profiles provided g
evidence for the first-order nature of this phase transition.
increasing the external unwinding force, the linear dimens
of a long polymer coil can vary over several orders of ma
nitude abruptly. This may be useful in some applications
chemical/biochemical engineering in designing a molecu
gateway in which the gate is closed by stretching the po
mer chain to block the path. By performing careful finite-si
analysis of the free energy profile data, we showed that s
a transition occurs for a polymer chain in the entire po
solvent regime below theQ point (x.xc). Mean-field
theory predicts correctly the first-order nature of the tran
tion, but this transition occurs only in thex.2xc regime.
The discrepancy is due to the corrections to mean-field
havior.

On the other hand, the first-order phase boundary sepa
ing the collapse and stretched states can be computed
the histogram Monte Carlo extrapolation. Figure 9 displa
the phase diagram obtained from data ofN580 polymer
chain. The collapse state is in the largex region while the
stretched state lies in the smallx regime. The prediction of
the phase boundary from mean field theory in Eq.~5!, using
x* 52xc51.04, is also shown for comparison. The mea
field result can only describe the phase boundary qua
tively. The prediction is better in the largerx behavior. More
significant deviation is observed for data nearx* . Naively
extrapolating the simulation data forN540 and 80 in Fig. 9
to the x axis givesx* ;0.5 consistent with the value ob
tained from finite-size analysis in the preceding section.

This first-order phase transition can be understood in
itively from the following physical picture: the monomer
are attracted rather strongly to each other in the collap
situation, the external force acting on the ends of the polym
which tends to unfold the polymer will increase the tensi

ta.

FIG. 9. Phase diagram of the reduced threshold forcew* versus
x. Solid line is the result from the mean-field theory by takin
x* 52xc51.04. Symbols are Monte Carlo data for chains of leng
N540 and 80.
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6228 PRE 58PIK-YIN LAI
along the chain and try to pull the monomers apart from e
other. As the external unwinding force becomes stro
enough, the monomer attraction will be overcome and
separation between monomers increased. Since the attra
among the monomers is short ranged, and provided the
sion along the chain is uniform~this is true if the unwinding
force increases slowly enough and the chain has suffic
time to equilibrate!, the restoring force will disappear sud
denly once the separation between the monomers exc
the range of attraction. As a result, the polymer will
stretched abruptly leading to a first-order phase transit
et

nc

nc

o-

.

h
g
e
ion
n-

nt

ds

n.

The above picture suggests that this first-order transition m
be smoothed off to a higher-order or even no phase trans
if the range of monomer attraction is sufficiently long. Th
will be tested by our future simulations.
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